Relationships between linear and angular motion

- Body segment rotations combine to produce linear motion of the whole body or of a specific point on a body segment or implement
 - Joint rotations create forces on the pedals.
 - Forces on pedals rotate crank which rotates gears which rotate wheels.
 - Rotation of wheels result in linear motion of the bicyclist and his bike.

Example: Hockey wrist shot

- A hockey player is rotating his stick at 1700 deg/s at the instant of contact. If the blade of the stick is located 1.2 m from the axis of rotation, what is the linear speed of the blade at impact?
 - know:
 - need:
 - use:
 - answer:

Radial acceleration

- Radial acceleration (a_R) the linear acceleration that serves to describe the change in direction of an object following a curved path.
 - Radial acceleration is a linear quantity
 - It is always directed inward, toward the center of a curved path.

Example – Radial acceleration

- Skaters or skiers on a curve must force themselves to change directions.
- Changes of direction result in changes in velocity - even if the speed remains constant (why?)
- Changes of velocity, by definition, result in accelerations (*a_R*).
- This radial acceleration is caused by the component of the ground reaction force (GRF) that is directed toward the center of the turn.

- Two bicyclists are racing on a rainy day and both enter a slippery corner at 25 m/s. If the one cyclist takes a tighter turning radius than the other, which cyclist experiences the greatest radial acceleration?
 - Who is at greater risk for slipping or skidding?
 - What strategies can cyclists take to reduce the risk of skidding?
 - Which strategy is theoretically more effective?

• <u>Tangential acceleration</u> (a_{τ}) - the linear acceleration that serves to describe the rate of change in magnitude of tangential velocity.

$$a_T = (v_{Tf} - v_{Ti})/t$$

Although a_τ may appear to be a new term, it is simply the change in linear or tangential velocity of the point of interest.

Resultant Acceleration Vector

- Rotational and curvilinear motions will always result in radial acceleration because the direction of the velocity vector is always changing.
- If the magnitude of the velocity vector also changes, tangential acceleration will also be present.
- Therefore, during all rotational and curvilinear motions the resultant acceleration is composed of the radial and tangential accelerations.

